SMOOTH MANIFOLDS FALL 2023 - HOMEWORK 4.5

Problem 1. Consider spheres with centers $x_{1}, x_{2} \in \mathbb{R}^{3}$ and radii $r_{1}, r_{2} \in \mathbb{R}_{+}$, respectively. Find the quadruples $\left(x_{1}, x_{2}, r_{1}, r_{2}\right)$ for which the intersection is transverse, and show that your answer is correct.

Problem 2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{∞} function. Find a diffeomorphism between \mathbb{R}^{2} and Γ_{f}, the graph of f. Compute the tangent bundle to the graph of f in two ways:
(1) at each point $z \in \Gamma_{f}$, find a pair of linearly independent vectors in $T_{z} \Gamma_{f}$
(2) at each point $z \in \Gamma_{f}$, find a functional φ_{z} such that $T_{z} \Gamma_{f}=\operatorname{ker} \varphi_{z}$

Finally, consider two C^{∞} functions f and g on \mathbb{R}^{2}. Find a necessary and sufficient condition on the functions f and g so that there exists $c \in \mathbb{R}$ such that Γ_{f} and Γ_{g+c} intersect nontrivially and transversally.
Problem 3. Show that for almost every matrix $A \in M_{2}(\mathbb{R})=\mathbb{R}^{4}$, the function $F_{A}: S^{1} \rightarrow \mathbb{R}^{2}$ is transverse to S^{1}, where $F_{A}(v)=A v$. For which matrices A does the image of F_{A} intersect S^{1} nontrivially? For which values is F_{A} an immersion? An embedding?

Problem 4. Let $X=M_{2}(\mathbb{R})=\mathbb{R}^{2}$, and $F: X \rightarrow X$ denote the function $F(A)=A^{2}$. Compute the differential of the function F as a 4×4 matrix.

